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Abstract

Alcohol is the most commonly used drug of abuse in the world and binge drinking is especially 

harmful to the brain, though the mechanisms by which alcohol compromises overall brain health 

remain somewhat elusive. A number of brain diseases and pathological states are accompanied by 

perturbations in Blood-Brain Barrier (BBB) function, ultimately exacerbating disease progression. 

The BBB is critical for coordinating activity between the peripheral immune system and the 

brain. Importantly, BBB integrity is responsive to circulating cytokines and other immune-related 

signaling molecules, which are powerfully modulated by alcohol exposure. This review will 

highlight key cellular components of the BBB; discuss mechanisms by which permeability is 

achieved; offer insight into methodological approaches for assessing BBB integrity; and forecast 

how alcohol-induced changes in the peripheral and central immune systems might influence BBB 

function in individuals with a history of binge drinking and ultimately Alcohol Use Disorders 

(AUD).
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Introduction

The BBB functions as one of the most vital barriers to protect the CNS from homeostatic 

disruption in mammalian species. From birth, the barrier serves to closely regulate active 

and passive transport of blood-borne substances into and out of the brain. This ensures 

optimal brain health and facilitates communication between the central nervous system 

(CNS) and peripheral organ systems that mediate normal bodily function (Saunders, 

Liddelow & Dziegielewaska, 2012; Saili et al., 2017). In the context of inflammation, insult, 

stress, or exposure to drugs of abuse, and immune signaling factors as well as the drugs 

themselves are controlled by gating mechanisms mediated by the BBB (Pimentel et al., 

2020). The transit of signaling factors from the periphery into the brain confers a degree of 
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“awareness” for the CNS as to what is occurring in the periphery (Reinhold & Rittner, 2016; 

Fuzzati-Armentero, Cerri & Blandini, 2019). Dysfunction of this gatekeeping role often 

culminates in extreme pathology due to excessive influx of immune signaling factors into 

the CNS, which in turn creates a cyclical pattern of disruption. Thus, damage or alterations 

to BBB permeability have far-reaching implications for subsequent brain health (Daneman 

& Prat, 2015; Profaci et al., 2020).

Ethanol remains one of the most commonly used drugs of abuse in modern society. Owing 

in part to its cultural/societal acceptance, a reported 85.6% of individuals aged 18 and 

older self-report consumption of alcohol at some point in their lifetime (SAMHSA, 2019). 

While there is some data to suggest a small quantity of ethanol consumption can have 

beneficial impact, 25.8% of individuals 18 and older self-report having engaged in harmful 

binge consumption within the past month (SAMHSA, 2019). Binge patterns of ethanol 

consumption and heavy alcohol use are especially harmful to both the brain and organ 

systems throughout the body. For instance, higher levels of self-reported drinking have 

been associated with reduced grey matter volumes across the brain (Kvamme et al., 2016; 

Howell et al., 2013). Binge drinking also strongly predicts a future diagnosis of an Alcohol 

Use Disorder (AUD), which can compromise overall health across the lifespan (Grant & 

Dawson, 1997; Dewit et al., 2000).

Chronic alcohol abuse and dependence are associated with pathological increases in 

inflammation that often leads to organ dysfunction (Wang, Zakhari & Jung, 2010; Leclerq 

et al., 2017), whereas more moderate doses may produce lower risk levels in some 

circumstances (Pai et al., 2006; Wang et al., 2008; Bektas, Sen & Ferruci, 2016). One 

hallmark of alcohol dependence, alcoholic liver disease, is known to involve inflammatory 

signaling at many different levels of cellular and organ function (Wang et al., 2012). For 

instance, alcohol can mobilize gut-derived endotoxins, increase inflammatory signaling 

factors such as cytokines, and increase oxidative stress (Fujimoto et al., 2000). Increased 

TLR4-mediated signaling in Kupffer cells, hepatocytes, stellate cells, and other important 

cellular components of the liver are functionally changed by alcohol (Mandrekar & Szabo, 

2009). Beyond these peripheral changes, there is a growing body of literature that examines 

the impact of ethanol on the gut and how these changes may have more far-reaching 

impact on behavior and brain function. For example, gut microbiome dysfunction can 

modulate vagus nerve signaling, ultimately amplifying the neuroimmune response in the 

amygdala and contributing to heightened anxiety and other behavioral changes observed 

during alcohol withdrawal (Gorky & Schwaber, 2016). Finally, both rodent and human data 

indicate that prolonged alcohol use and abuse produces a persistent immunosuppressive 

phenotype that compromises host defense. While this phenotype often may be subclinical in 

magnitude, when it is combined with an additional immune challenge or insult pathological 

immunosuppression emerges (Szabo & Saha, 2015).

In preclinical studies with rodents, acute, binge-like alcohol exposure produced fluctuations 

in pro-inflammatory cytokine expression, with unique cytokine signatures apparent during 

acute intoxication and a separate pattern evident during alcohol hangover/withdrawal. 

Specifically, IL-6 and IκBα were markedly increased within the first few hours after 

ethanol exposure, whereas IL-1β and TNFα were only increased after ethanol clearance 
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(Doremus-Fitzwater et al., 2014; Walters et al., 2017; Gano et al., 2019). Although the 

magnitude of these changes varies somewhat across the CNS, they are particularly prevalent 

in limbic structures such as the hippocampus, amygdala, and the paraventricular nucleus 

of the hypothalamus (Doremus-Fitzwater et al., 2014). Such changes in neuroimmune 

factor gene expression are both reproducible and highly conserved, with prior studies 

reporting equivalent responses in males and females (Gano et al., 2019), and multiple 

rat strains (Gano, Doremus-Fitzwater, and Deak, 2018). Surprisingly, age of alcohol 

exposure has emerged as a critical demographic variable which determines the magnitude 

of neuroimmune signal gene expression response to an acute alcohol challenge. Adolescent 

rats showed severely diminished neuroimmune responses to alcohol, perhaps in part due to 

a functional immature neuroimmune system (Doremus-Fitzwater, 2015; Marsland, 2021). 

In contrast, late aging (24 month) led to a heightened basal expression of cytokines, which 

made these aged rats refractory (i.e., less responsive) to ethanol-induced neuroimmune 

changes (Gano et al., 2017). Thus, age of ethanol exposure appears to be a critical 

determinant of ethanol-related changes in inflammation.

Given the abundance of data that binge or supra-binge levels of ethanol exposure produce 

a distinct neuroimmune profile, this review will evaluate the potential influence of ethanol 

evoked inflammation and cytokine induction might have on BBB function. While few 

studies have directly assessed ethanol’s ability to alter BBB function, there is an established 

body of work demonstrating that inflammatory signaling is mechanistically linked to 

changes in BBB function. Indeed, inflammatory agents such as LPS have been used 

in a number of studies to mimic bacterially derived inflammation. Using LPS as a 

challenge, alterations in BBB permeability may involve a variety of key BBB regulatory 

mechanisms, including (i) direct damage to the endothelium; (ii) alterations in tight junction 

(TJ) expression and/or function that “loosen” adhesion of cells; (iii) increased nitric 

oxide (NO), a transient gas that promotes vasodilation; and (iv) changes in glial (e.g., 

astrocytes, pericytes, microglia) function and quantity; and many other BBB regulatory 

mechanisms (for a more thorough review of this literature see Varatharaj & Galea, 2016). 

As ethanol impacts many of these same physiological parameters and is known to modulate 

inflammation, it seems reasonable to hypothesize that binge-like alcohol use and abuse 

compromises BBB function through inflammation-related mechanisms (Figure 1). The 

present review provides a more detailed framework for pursuing this hypothesis with 

empirical studies.

Form and Function of the BBB: Gatekeeper of Neurovascular Unit Function

The BBB plays a vital role in regulating passage of cells and biomolecules into the CNS 

and is conserved in some form across vertebrate species (O’Brown, Pfau & Gu, 2018). 

The complex nature of the brain and the processes it governs means that it must gate 

the passage of infiltrating monocytes and potential toxins and toxicants present in general 

circulation. At the same time, bidirectional communication is needed to orchestrate effective 

responses to environmental stimuli. To accomplish this, the BBB functions as a critical 

gatekeeper of what reaches the parenchyma of the CNS. The BBB is comprised of a 

variety of cells that work synchronously to provide differing levels of neural protection 

across the CNS-peripheral nervous system (PNS) and in response to changing physiological 
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circumstances (Zhao, Nelson, Betsholtz, & Zlokovic, 2015). Brain endothelial cells form 

the tight physical barrier restricting molecules from entering the brain. Cell-to-cell tight 

junctions and adherens junctions function as physical barriers to large and/or hydrophilic 

molecules (Zhao et al., 2015). Tight junctions ensure that only small, lipophilic molecules, 

estimated to be under 400 Daltons (Da; or 0.4 kDa) can freely pass (Pardridge, 2015). 

While this aspect of the BBB helps the CNS maintain persistent exclusivity to larger 

and potentially harmful entities, the brain requires mechanisms that govern passage of a 

multitude of macromolecular proteins, amino acids, and other building blocks that can’t 

freely pass through the BBB. Movement of these molecules is accomplished via an array 

of active and passive transport mechanisms. Polar, hydrophilic, small molecules such as 

amino acids utilize solute carrier membrane transport proteins set within the BBB to gain 

access to the CNS through facilitated diffusion down the concentration gradient, whereas 

macromolecule and peptide transit is more frequently handled by more traditional, energy-

driven, receptor-mediated transport mechanisms (Banks, 2015; Zhao et al., 2015). All of 

these systems provide important mechanisms for both paracellular and transcellular crossing 

into and out of the CNS and serve to highlight the gating dynamics as well as the importance 

of BBB function to overall brain health.

The Neurovascular Unit

In some ways, the neurovascular unit (NVU) represents a modification and expansion of 

the classic “tripartite synapse” concept used to summarize synaptic transmission in the CNS 

(Muoio, Persson, & Sendeski, 2014). At the heart of the NVU, neurons are exceptionally 

sensitive to changes in blood oxygen, nutrients, and other blood-borne molecules that are 

carried through the blood supply. Neuronal communication is energy-intensive and, in 

response to local changes in neuronal activity other components of the NVU, local blood 

flow to the NVU is altered to match oxygen and nutrient demand. Thus, form and function 

of the NVU is designed to be responsive to changing neuronal activity and ultimately to 

optimize neuronal function.

While the “tripartite synapse” incorporates the most direct cellular elements of synaptic 

communication (neurons and astrocytes), it does not take into account the many other 

cellular interactions that chemically influence neuronal health and function (Neuwelt et al., 

2011). While not every neurovascular interface is identical, it is most frequently comprised 

of the endothelium, surrounded by the basement membrane, encapsulated by pericytes, and 

in close contact with both astrocytic end-feet and microglia (see Figure 2). Each of these 

component cells regulate unique aspects of NVU function as a whole, and are poised 

to significantly influence BBB permeability (McConnell et al., 2017). Closely aligned 

astrocytes and microglia play important roles in buffering the cellular microenvironment, 

often serving as intermediate signaling cells between blood-borne agents and neurons, and 

vice versa.

Astrocytes function as a direct cellular mediator between neurons and the remainder of the 

neurovascular unit. Astrocytic end-feet almost completely encapsulate the endothelial cells 

that comprise the capillaries of the NVU permitting bidirectional communication between 

both cell types (Figure 2). Through these connections, the astrocytes release a variety of 
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factors such as prostaglandins and NO that have the capacity to alter blood vessel diameter 

and therefore blood flow in response to changing neuronal demand (Wolf & Kirkchoff, 

2008). Astrocytes also play an active role in the recycling and clearance of neurotransmitters 

and water from the brain that helps to ensure overall brain function (Sofroniew and Vinters, 

2010).

While astrocytic end-feet play an important role in modulating cerebral blood flow, other 

cells associated with, or encapsulated by, astrocytic end-feet are also critical. The primary 

contact to the endothelial cells within the NVU is pericytes (Figure 2). Pericytes have 

emerged as critical modulators of BBB development and functional integrity, since they 

specifically aid in the attachment of astrocytic end-feet to the NVU (Armulik et al., 2010). 

Loss of pericytes is known to promote upregulation of several genes (i.e. Angiopoietin 

2, Intercellular Adhesion Molecule 1, and Galectin 3) associated with increased vascular 

permeability, suggesting a role in BBB maintenance and endothelial cell regulation 

(Daneman et al., 2010). This can help promote angiogenesis and guide vascular branching 

within the cerebral vasculature (Bergers & Song, 2005; Eilken et al., 2017). More recently, 

it has also been noted that pericytes also display a direct role in modulating cerebral 

blood flow. For example, through contraction of the processes that wrap around the vessel, 

pericytes directly increase or decrease vessel constriction in response to oxygen/nutrient 

needs of the brain (McConnel et al., 2017).

Microglia, much like astrocytes, express factors that contribute to both the maintenance 

and degradation of the BBB. Microglia are considered the “first responders” of the CNS, 

responding to insult, excessive neuronal activity, tissue damage or infection with rapid 

expression of chemokines and cytokines that forward-propagate neuroinflammation (Liu 

et al., 2020). Through active monitoring of the NVU, microglia can transition through a 

number of active states which are accompanied by adaptive changes in the neuroimmune 

factors they release. One down-stream consequence of microglial activation is impaired 

BBB function (Haruwaka et al., 2019). A substantial amount of cross-talk occurs between 

astrocytes and microglia and, through a coordinated response, they orchestrate the NVU’s 

response to damage (Figure 2). Increases in the total number of active microglia are 

associated with increased BBB leakiness and multiple diseases associated with BBB 

dysfunction are correlated with changes in genes unique to microglia such as DAP12 (Sasaki 

et al., 2015). The final component of the NVU is the basal lamina (Figure 2). The basal 

lamina perform an important structural role in the NVU by providing anchor points for the 

astrocytic end-feet. It functions as an additional extracellular matrix comprised primarily of 

collagen and laminin. Signaling of both endothelial cells and pericytes guide the creation of 

the basal lamina and ultimately serve as a physical boundary between the two cell types. 

Thus, the typical NVU is comprised of multiple cell types in close cellular juxtaposition, 

with extensive cross-talk between each type.

Molecular Passage Across the BBB

The first line of defense forming the BBB is conferred by brain endothelial cells, which form 

the vascular wall and constrain passage of blood and its cargo into the interstitial tissue. 

TJs between adjacent endothelial cells prevent the passage of material between endothelial 
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cells and are largely comprised of three families of proteins: occludins, claudins, and other 

adhesion molecules (Luissint et al., 2012). Studies have shown that interference or knockout 

of any of these three is associated with increased pathological BBB permeability (Nitta et 

al., 2003). While the semi-permeable nature of tight junctions varies across the CNS, they 

are generally considered to be relatively impermeable, allowing only very small (<400 Da), 

lipid-soluble molecules to cross (Pardridge, 2007).

While small, highly lipophilic molecules may cross freely through TJs, the passage of many 

endogenous and exogenous molecules across the BBB is governed by active transporters. 

The variety of membrane transport proteins can then be further divided into uptake/influx 

(into the brain) and efflux (out of the brain). The parenchyma of the brain is carefully 

guarded and, generally, for any drug or large molecule, access is extremely limited. Essential 

nutrients such as amino acids and glucose only gain access to the CNS through uptake 

systems such as organic anion transporters, organic cation transporters, and multidrug and 

toxin extrusion proteins (Sanchez-Covarrubias et al., 2014). Active transport of these larger 

polar molecules is facilitated by these membrane proteins. Despite gaining access to the 

brain, a number of efflux transporters pump out larger, polar molecules that may be present 

in the CNS. This serves an important regulatory role in preventing over-accumulation of 

larger molecules, and carefully maintains homeostasis of brain nutrients. Efflux transporters 

include the Para-glycoprotein (PGP) complex and multidrug resistance-associated proteins 

(de Boer, van der Sandt, & Gaillar, et al., 2002). The PGP complex specifically plays a vital 

role in the removal of drugs from the CNS and has remained a focal point in designing new 

generations of pharmaceuticals that can gain selective access to the brain (for more thorough 

review see Bendayan, Lee, & Bendayan, 2002; Loscher & Gericke, 2020). The function 

and quantity of these transporters can be altered in response to a number endogenous and 

exogenous factors such as neurotransmitters, cytokines, and pathological insult (Avemary 

et al., 2013; Keaney & Campbell, 2015). Thus, a variety of active transport mechanisms 

contribute to passage of small molecule and macromolecular complexes across the BBB.

Cytokines interact with the BBB in a number of different ways and many different cytokines 

transit across the BBB through shared and unique transport mechanisms (see Banks, 2005; 

Banks, 2008 for excellent reviews). Importantly, cytokine transit is dynamic and can show 

significant differences in transport rate depending on the animal species, as a result of 

circadian changes, in region-specific manners, and in response to bodily demands (when 

challenged). As specific examples, IL-1β is known to cross the BBB into the brain using 

unidirectional, saturable transport mechanisms (Banks et al., 1991; Davson & Segal, 1996). 

Similarly, both IL-6 and TNF-α utilize unidirectional saturable transport mechanisms to 

transit into the brain; however, it is believed that they use explicitly different transporters 

(Banks et al., 1991; Banks, Kastin & Gutierrez, 1994; Gutierrez, Banks & Kastin, 1993). 

In contrast, some cytokines, such as neutrophil chemoattracant-1, are able to cross the BBB 

using diffusion and in some circumstances, such as IL-2, transit is not believed to occur (Pan 

& Kastin, 2001; Waguespack, Banks & Kastin, 1994). While saturable transport is a primary 

mechanism by which many cytokines enter the brain, IL-1β, TNF-α, and IL-6 have all been 

shown to enter the blood from the brain through cerebrospinal fluid absorption (Banks et al., 

1991; Chen et al., 1997; Chen & Reichlin, 1998). These differences highlight the ability of 

both the peripheral and central immune system to influence one another.
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The Role of the BBB in Peripheral to Central Immune Signaling

For an optimal immune response to infection or injury, effective communication must 

occur between the periphery (and its constituent inflammatory mediators) and the brain 

(Maier & Watkins, 1998). As such, BBB function is poised to be a key intermediary 

governing immune-to-brain communication, particularly for immune signaling molecules 

such as cytokines and chemokines (Banks, 2005; Erickson, Wilson, & Banks, 2020). Studies 

have shown that TJ permeability is subject to change due to local gene regulation (Balda 

& Matter, 2009). Inflammatory mediators such as histamines increase permeability in brain 

endothelial cells in a similar fashion as seen in peripheral capillaries through opening of 

inter-endothelial cell tight junctions (N. J. Abbott, Ronnback, & Hansson, 2006). In response 

to hypoxia, increased TJ expression and upregulation of PGP, responsible for rapid transit of 

compounds out of the brain, result in increased barrier stringency (N. J. Abbott et al., 2006). 

These findings suggest that BBB permeability is not a static aspect of physiology, but rather 

constantly changes in response to physiological conditions.

One of the key components responsible for communication between peripheral and central 

immune responses are cytokines. Cytokines are produced by microglial cells, endothelial 

cells, astrocytes, macrophages, and many other types of cells both within the CNS and in the 

periphery. They are released rapidly during the acute inflammatory process and are able to 

cross the BBB via passive diffusion in CNS regions, only where the BBB is weak or absent, 

such as the circumventricular organs and the OVLT (Buller, 2001; Buller, 2002; Roth et al., 

2004). Many cytokines are also subject to active transport mechanisms, which specifically 

transport cytokine proteins across the BBB into the CNS; although, the precise mechanism 

of cytokine transit across the BBB is largely species and context-dependent (Banks, 2005). 

Importantly, many cytokines also disrupt the BBB. Pro-inflammatory cytokines and other 

inflammatory signaling factors cause TJ degradation, thereby increasing permeability of the 

BBB (Coisne & Engelhardt, 2011; Wan, Chen, & Li. 2013; Al-Obaidi & Desa. 2018). This 

is, at least partially, caused through disruption of adhesion molecules on endothelial cells. 

When combined with chemokine signaling, leukocyte recruitment permits extravasation, the 

movement of white blood cells from the blood capillaries into the CNS often towards the site 

of insult. Cytokines can also damage the basal lamina by inducing matrix metalloproteinase 

(MMP) expression by endothelial cells and microglia, which further impairs the structural 

integrity of the BBB (Klein & Bishcoff, 2011; Gurney, Estrada, & Rosenberg, 2006).

In addition to active and passive transport across the BBB, many inflammatory signaling 

molecules use neural pathways, humoral pathways, and direct interaction with endothelial 

cells to propagate de novo inflammatory signals on the brain side of the BBB (Goehler 

et al., 1999; Laflamme & Rivest, 2001; Disabato, Quan, & Godbout. 2016). In this way, 

inflammatory signals originating in the periphery communicate with the CNS through 

transcellular communication. Many peripheral cytokines and other inflammatory mediators 

also bind to peripheral nerves or nerve associated lymphoid tissue (NALT), causing the 

peripheral inflammatory signal to be transcribed into neural impulses, which in turn 

may orchestrate central inflammation signaling (Kennedy & Silver, 2016). Thus, most 

mammalian species have evolved multiple physiological mechanisms for PNS-CNS immune 

communication that bypasses direct passage of peripherally-derived cytokines into the CNS.
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Alterations in BBB function are frequently noted in response to challenges that evoke 

inflammation or a profound immune response. High levels of proinflammatory cytokines 

such as IL-1β & IL-6, often released by microglia, lead to increased permeability of 

the BBB that in times of more extreme pathology allow the infiltration of peripheral 

macrophages and other immune cells into the CNS (Jin, Silverman, & Vannucci, 2009). 

Microglia, the prominent and resident immune cell of the CNS, migrate to the damaged 

area in response to focal injury or conventional immune challenges and, through a variety 

of different modalities, forward-propagate the expression of chemokines, cytokines, and 

other signaling molecules crucial for tissue repair (in the case of damage) or host defense 

(in the case of infection). This increase in inflammatory tone can evoke significant 

changes in the BBB including increasing local permeability. Proinflammatory cytokines 

are integral for leukocyte trafficking across the BBB (Blond, Campbell, Butchart, Perry, 

& Anthony, 2002), one mechanism by which the peripheral immune response may modify 

central immune function. Minocycline administration, a tetracycline antibiotic that reduces 

microglial activity, has also been shown to reduce BBB permeability induced by LPS 

exposure, suggesting a potential role for microglia in inflammation-mediated BBB change 

(Moretti et al., 2015). LPS exposure in neonatal rats (PND0-PND8) has also been shown 

to increase BBB permeability, but only once animals reach adulthood and not at P20 (Stolp 

et al., 2011). These changes suggest a potential developmental vulnerability to some of 

the inflammation-induced BBB permeability changes. Correlations have also been observed 

between multiple pathophysiological conditions such as Alzheimer’s disease, cancer, and 

multiple sclerosis, heightened cytokine levels, and the BBB (Moretti et al., 2015; Schenk & 

de Vries, 2016; Wardill et al., 2016).

Sex differences have been well documented regarding changes in BBB function and data 

have shown that sex differences exist in many cellular components of the BBB (Torres & 

Bynoe, 2018). Some of the differences noted in BBB permeability are believed to stem from 

endogenous differences in estrogen and the potential role estrogen may have in protecting 

against BBB degradation. Female-typical hormones such as estrogens and progestins also 

have anti-inflammatory properties (Nadkarni & McArthur, 2013), which may short-circuit 

inflammation-dependent alterations in BBB permeability. In addition, estrogen has been 

shown to enhance tight junctions, limit lymphocyte extravasation, and protect against BBB 

degradation resulting from LPS administration (Maggioli et al., 2016). In contrast, some 

data have shown that certain strains of mice may show heightened female vulnerability to 

changes in BBB permeability after LPS challenge (Erickson et al., 2018). Given the number 

of factors capable of modifying the components of the BBB and NVU, additional studies 

directly assessing sex differences in BBB regulation are needed.

Approaches for Assessment of the BBB

Several simple and straight-forward approaches for assessment of BBB integrity are used 

routinely, each with their strengths and limitations. One of the most common methods 

for quantifying BBB function is through the assessment of individual genes, proteins, or 

cells that are known to be involved in formation of the BBB. There is no shortage of 

work examining factors such as claudins, occludins, integrins, and other adhesion molecules 

(Liebner et al., 2000; Dias et al., 2019). Similarly, direct visualization of endothelial cells, 
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astrocytes, perivascular microglia or pericytes offer additional opportunities to investigate 

the NVU in relation to BBB integrity (Kovacs et al., 2017; Brown et al., 2020). While 

these approaches address cellular and structural mechanisms contributing to the BBB, they 

do not provide a direct functional assessment of BBB permeability. In addition, a number 

of in vitro model systems have been used to assess BBB permeability, offering unique 

opportunities to assess specific BBB regulatory mechanisms (Sivandzade & Cucullo, 2018). 

Comprehensive in vitro modeling of the BBB requires functional incorporation of the 

various cellular components of the NVU, an incredibly challenging task. However, to truly 

assess the functional integrity of the BBB, permeability characteristics of the BBB must be 

probed through the use of dye-based or radioligand-based, in vivo assessments.

One of the oldest and most common approaches for measuring BBB permeability is 

through the use of dyes or labeled compounds to directly quantify brain access. Dating 

back to Rossner and Temple (1966), Evans Blue (a vital dye that binds to serum albumin 

and other macromolecules) has been used as a metric for how much albumin is able to 

cross into the brain. Albumin is a relatively large molecule (~70 kDa) that, under normal 

conditions, should demonstrate little access to the brain. Due to its function as a vital 

dye, this allows for a quick and relatively simple quantification of dye extravasation in a 

variety of tissue compartments following a single in vivo exposure. These studies often 

use i.v. administration of Evans Blue dye followed by quantification or visualization of 

the amount of dye that accumulates in brain tissue as a metric for BBB permeability, 

either through tissue slicing and direct visualization; or through gross dissection of brain 

regions, homogenization of tissue, and quantification of dye using a spectrophotometer. 

More recently, however, a number of questions have been raised about the validity of 

the Evans Blue dye assessment. For instance, we now know that Evans Blue does not 

to bind exclusively to albumin, suggesting the scientific premise underlying this approach 

may be flawed (see Saunders et al., 2015 for review). Further, 70 kDa is a comparatively 

large compound relative to many nutrients and humoral signaling molecules commonly 

distributed in the blood. While it certainly addresses extreme instances of BBB pathology, 

it does not address smaller molecule permeability that could still have important biological 

significance. For instance, many pro-inflammatory cytokines range from 14–20 kDa in size, 

suggesting significant passage of these molecules at levels of BBB disruption that would not 

be effectively quantified with an Evans Blue dye extravasation test.

Another common method to study BBB permeability is the use of horseradish peroxidase 

after i.v. administration. Horseradish peroxidase is a roughly 45 kDa glycoprotein that, when 

combined with the proper substrate, can produce a colorimetric or fluorometric derivative 

allowing it to be easily quantified. As with Evans Blue dye, this allows for simple in vivo 
administration to be quantified in a variety of tissue compartments. The reaction product 

can be visualized using electron microscopy, allowing even more detailed assessment of 

BBB permeability. While this technique was shown to work effectively in mice, the method 

has been questioned because in rats, horseradish peroxidase alone can cause histamine and 

serotonin release, both of which increase BBB permeability and may potentially confound 

results of such an analysis (Majno et al., 1961). Moreover, many of the toxic consequences 

of HRP seem to be dose- and species-specific, making interpretation across experiments and 

laboratories complicated (Cotran et al., 1968; Clementi. 1970; Ross et al., 1977).
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To more specifically probe BBB integrity across a spectrum of molecular sizes, more 

recent studies have used fluorophore-tagged dextran molecules (Natarajan, Northrop, & 

Yamamoto, 2017). Dextrans are complex polysaccharides that can be purchased across a 

range of sizes (ranging from as small as 4 kDa to as large as 2000 kDa). In this model, 

transcardial perfusion of Dextran of the target molecular weight is followed by tissue 

slicing and visualization of fluorescent dye in the interstitial tissue. By probing a range 

of molecular weights, a more refined and sensitive assessment of subtle, yet biologically 

important fluctuations in BBB integrity is possible.

Previous work from our laboratory has probed BBB permeability in response to acute 

ethanol challenge using several approaches. Using the Evans Blue procedure described 

above, we assessed the sensitivity of the method using a high dose LPS injection (500 μg/kg) 

as a presumptive positive control previously documented as producing increased BBB 

permeability (Ghosh et al., 2014; Banks et al., 2015). We saw no substantial differences 

in brain dye content relative to no dye or vehicle injected controls (Fig. 3A). These data 

mirror small pilot studies that were executed to determine whether any observable changes 

in Evan’s Blue dye could be quantified following ethanol exposure. Given our concern over 

assay sensitivity, we piloted adolescent intermittent ethanol (AIE) exposure evoked changes 

in BBB permeability using a more sensitive protocol, the FITC-dextran procedure, and 

observed substantial increases in permeability in adult rats with a history of AIE ethanol 

exposure at the 20 kDa size (Fig. 3B). Such an assessment would not have been possible 

without the flexibility of size provided by dextran, and it is highly likely that such a 

difference would have been missed entirely at the 70 kDa assessment size relevant to Evans 

Blue.

It is critical to note that 70 kDa passage across the BBB represents a degree of permeability 

that would imply a highly pathological level of infiltration into the brain. In contrast, the 

20 kDa weight range used with dextran is mechanistically relevant as the pro-inflammatory 

cytokines (IL-6, IL-1β, TNFα) evoked by ethanol are similar in weight. Since these dextrans 

are available tagged to a variety of fluorophores, they offer an easy method for both 

visualization of brain tissue as well as quantification through fluorometry. Despite the 

advantages of this method, as with Evans Blue and HRP, repeated dextran administration has 

also been shown to be toxic (Edlund, 1952) and depending on the structure and size of the 

polysaccharide branching this may increase toxicity producing a confound. In addition, as 

dextran is a sugar it is possible that the inherent mechanisms responsible for detecting and 

responding to blood glucose levels could potentially respond to and facilitate the transfer 

of smaller dextrans across the BBB. Nevertheless, the FITC-tagged dextran approach offers 

significant advantages over earlier approaches.

Whereas all methods of assessing BBB integrity have strengths and limitations, all of the 

methods discussed above are readily available and easy to implement for in vivo studies. 

In selection of a model, one must consider a number of critical issues, including (i) the 

size of molecule and how it relates to sensitivity of the intended test of BBB integrity; 

(ii) potential toxicity risks associated with the target compound/dye that will be used; and 

(iii) potential off-target binding activity of the target compound/dye that may obfuscate 

conclusions. From our perspective, the ability to procure multiple dextran sizes and probe 
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BBB integrity at different macromolecular weights represents a substantial advantage in 

study design. This method ensures a high degree of sensitivity in probing BBB permeability 

to an array of different compounds and minimizes potential type 2 errors that may occur 

if an experiment using Evans Blue was employed. Overall, careful scrutiny should be 

employed when evaluating or designing studies to probe BBB integrity to avoid potential 

type I error (stemming from toxicity of the administered probes) as well as potential type II 

error (dismissing a potential change in BBB permeability because only one size was tested).

Regulation of BBB in Development

In rodent models, the BBB forms across embryonic development and is largely considered 

to be stably formed by birth (Engelhardt, 2003; Blanchette & Daneman, 2015). Prenatal 

BBB development is largely guided by canonical Wnt/beta-catenin signaling and VEGF 

release, which promotes angiogenesis and normal BBB development (Anderson et al., 

2011). Genetic disruption of this signaling in early embryonic development leads to both 

abnormal vessel guidance and morphology (Daneman et al., 2009) and also leads to the 

vessels displaying abnormal phenotypes that at times miss critical BBB junction regulating 

proteins such as claudin (Liebner et al., 2008). A number of good reviews outlining specific 

mechanisms that govern BBB permeability in prenatal development and how exposure to 

teratogens can alter BBB permeability across the lifespan are available (see Goasdue et al., 

2017). In contrast, much less work has attempted to directly assess changes in the BBB 

across postnatal development.

Though few studies have examined BBB permeability across the postnatal and adolescent 

periods, evidence suggests that the BBB continues to mature. Saunders, Liddelow, and 

Dziegielewska (2012) hypothesized that the prenatal and newborn BBB was “immature” 

relative to the adult BBB. While this claim has been challenged by others (Mallard et 

al., 2018), it is possible that maturation of the BBB is non-linear, and instead fluctuates 

to meet demands uniquely at different developmental epochs. For example, 2-hour old rat 

pups displayed markedly lower BBB permeability in response to pro-inflammatory cytokine 

injection than postnatal day (PND) 21 rats (Anthony et al., 1997). Similarly, adult rats 

displayed increased BBB permeability after acute stroke, an effect that was not observed 

in neonatal rats (Fernandez-Lopez et al., 2012). In addition, functional imaging studies 

have revealed that increased neural activity almost always corresponded with simultaneous 

increases in blood flow in adults, and that this coupling was not consistent in neonatal and 

developing brains, suggesting again that the dynamics that regulate the NVU in the adult 

brain are not operating in an identical fashion throughout development (Kozberg & Hillman, 

2016). Much of the remainder of the evidence supporting potential BBB immaturity during 

early development comes from changes observed in the components of the NVU across 

time. While as mentioned previously, endothelial cells, neurons, and even pericytes are in 

place relatively early in embryonic development, astrocytic end-feet placement tends to 

occur postnatally in rodents (Rowitch & Kriegstein, 2010). Changes in important regulators 

of BBB transport, such as endothelial transporters, are present in the newborn rat; these 

undergo intense periods of growth that ended in a near quadrupling of receptor quantity by 

the time rats hit early adolescence (Vanucci, 1994). While the role that development may 

play in “normal” BBB function has yet to be untangled, pathological challenges that occur 
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during these unique stages of brain development can have profound, long-lasting effects on 

BBB integrity. These parallel developmental differences in CNS and PNS function relative 

to age-specific physiological demands.

Extending BBB function into a lifespan framework, late aging is associated with natural 

breakdown of the transport mechanisms governing glucose, amino acid, and hormone 

transit, as well as lower PGP activity relative to younger individuals (Mooradian, 1994; 

Toornvliet et al., 2006). These changes functionally mimic an overall decline in BBB 

permeability, an effect that seems to parallel a marked shift in inflammatory tone later 

in life. Aging is associated with both an increase in inflammatory pathology such as 

atherosclerosis as well as an overall increase in systemic and CNS inflammation (Walker 

et al., 2018; Perkins et al., 2021). This is accompanied by an array of changes in the NVU 

including alterations in microglial activity (Ronaldson & Davis, 2012), impaired LTP and 

neurogenesis (Blau et al., 2012), TJ degradation (Elahy et al., 2015), and loss of pericyte 

coverage (Berthiaume et al., 2018). All of these changes represent different mechanistic 

ways in which BBB function could change and ultimately, seem to interact negatively with 

many of the pathologies that often worsen substantially in late aging (Alzheimer’s Disease 

(AD), vascular dementia, ischemic stroke).

Alcohol Effects on BBB Permeability

Adolescence Is A Time of Unique Vulnerability to The Neurotoxic Consequences of 
Ethanol

Alcohol use has been estimated to contribute to 3.3 million deaths per year globally and 

nearly $223.5 billion in monetary expenses to the United States alone (Control, 2014; 

Organization, 2014). Nearly 75% of this is attributed to binge drinking, defined by NIAAA 

as ethanol consumption resulting in Blood Ethanol Concentrations (BECs) of 0.08 mg/dL 

or higher (Control, 2014). This type of alcohol consumption is particularly common among 

adolescents (White, Kraus, & Swartzwelder, 2006). Although substantial progress has been 

made in curtailing adolescent binge drinking, the highest prevalence of binge drinking across 

age groups continues to occur among adolescents (Chung et al., 2018). These patterns 

of intake tend to peak in late adolescence and emerging adulthood (21–25 years of age), 

with consumption then tapering off throughout adulthood and into late aging. Even more 

concerning is the emergence of excessive drinking, termed “High Intensity” drinking, where 

BECs often approach 2–3 times the NIAAA definition of binge (Patrick & Azar, 2018). 

Such patterns of drinking are particularly hazardous and high frequency binge drinking is 

strongly correlated with a later AUD diagnosis (Crews, Vetreno, Broadwater, & Robinson, 

2016). Adolescents display altered sensitivity to many of the positive and negative effects 

of ethanol. This often manifests as a heightened susceptibility to the positive effects of 

ethanol such as subjective perception of reward (Pautassi et al., 2008) and social facilitation 

(Willey et al., 2009) and increased resilience to the negative consequences of ethanol such as 

social inhibition (Varlinskaya & Spear, 2002), sedation (Silveri & Spear, 1998) and aversion 

(Vetter-O’Hagen et al., 2009). This pattern of consequences is believed to contribute to the 

increased levels of ethanol consumption observed in adolescents.
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Beyond the concerns of early adolescent ethanol use on later alcohol use, the adolescent 

period displays heightened vulnerability to many long-lasting effects of ethanol use. At 

least some of the adolescent-like phenotypes discussed above display a “locking-in” like 

effect that persists into adulthood (Spear & Swartzwelder, 2014). In addition, the neurotoxic 

effects of ethanol are particularly profound during adolescence. Several studies have 

highlighted that adolescent ethanol exposure promotes inflammatory brain damage (Pascual 

et al., 2007), unique patterns of cortical brain damage (Crews et al., 2000), inhibited 

neurogenesis (Crews et al., 2006) and much more (Crews, Braun, Hoplight, Switzer, & 

Knapp, 2000; Guerri & Pascual, 2010). It is worth noting that most studies do not include 

comparisons of equivalent alcohol exposures in adults, making it difficult to attribute these 

findings to a vulnerability that is specific to adolescence.

Acute Ethanol Alters BBB Function

Several studies have examined the impact of acute and chronic ethanol on BBB function 

alone or in conjunction with other forms of challenge. Going back to 1990, postmortem 

human analysis revealed that individuals with a history of alcohol use disorders were 

documented as having abnormal or dysfunctional BBBs (Pratt et al., 1990; Thomsen, 

Kaatsch, & Asmus, 1994). Rodent studies from the 1970s have also hinted at a possible 

role that ethanol may have in modulating BBB permeability in response to stab wounds 

(Rosengren, Persson et al., 1979), and after chronic vapor exposure when challenged with 

starvation as a stressor (Phillips & Cragg, 1982). More recent in vitro studies have also 

shown that acute ethanol produced BBB dysfunction through TJ degradation in brain 

microvascular endothelial cells (Haorah et al., 2007) (Figure 4). Several other studies 

have shown that chronic ethanol exposure degraded many of the proteins associated with 

normal TJ function (Yu et al., 2017), and enhanced BBB permeability produced by LPS 

exposure (Singh et al., 2007). While no consistent mechanism has been identified as being 

responsible for these changes, ethanol interferes with normal TJ function (Haorah et al., 

2007), angiogenesis (Muneer et al., 2012), and endothelial transport receptors (Chang et al., 

2018).

Another potential mechanism by which ethanol produces substantial changes in BBB 

permeability is cytokine release. The TLR4 signaling pathway has been associated with 

BBB dysfunction (Szabo & Lippai, 2014; Wardill et al., 2016). At binge- or supra-binge 

levels of ethanol exposure, ethanol increased the functional release of high mobility 

group box-1 (HMGB1), a danger-associated molecular pattern (DAMP) that serves as an 

endogenous ligand at TLR4 (Ge et al., 2014; Zou & Crews, 2014; Wang et al., 2015; Crews 

& Vetreno, 2018). For this reason, high dose ethanol seems to recapitulate at least some of 

the effects observed with LPS, which also binds to TLR4 (Pandey, 2012; Alfonso-Loeches, 

2010). Both human and animal studies have supported a role of ethanol-induced TLR4 

signaling in BBB dysfunction. For instance, TLR4 KO mice displayed nearly none of 

the conventional neuroinflammatory consequences of ethanol and showed decreased BBB 

permeability (Alfonso-Loeches, Urena-Peralta, Morillo-Bargues, Gomez-Pinedo, & Guerri, 

2016). TLR4 KO mice exposed to binge drinking paradigms showed reduced levels of 

several proteins that are used as biomarkers of BBB permeability and hippocampal BBB 

impairment (Rubio-Araiz et al., 2016). The same studies have also found increased TJ 
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degradation in the brains of human alcohol abusers (Rubio-Araiz et al., 2016). Alcohol 

preferring P-rats displayed increased LPS-induced BBB abnormalities in comparison to 

normal rats (Singh, Jiang, Gupta, & Benlhabib, 2007). Thus, accumulating evidence posits 

TLR4 signaling as a potential mechanism for ethanol-induced disruption of the BBB, yet 

few studies have linked ethanol evoked TLR4 signaling with quantifiable differences in BBB 

permeability.

A final mechanism by which ethanol is known to affect the BBB is through altered blood 

flow. Even relatively small doses of ethanol substantially increase systolic, diastolic, and 

mean blood flow velocities (Stendel et al., 2016). This is believed to occur through dilation 

of the cerebral arteries, and significantly increased blood volume and access to the brain 

(Gazzieri et al., 2006). In contrast, reduced cerebral blood flow was observed during ethanol 

withdrawal in ethanol dependent individuals (Matthew et al., 1986). These changes can 

significantly modify stroke vulnerability and outcome. Consumption of small quantities of 

ethanol protected against ischemic stroke, whereas heavier alcohol consumption patterns 

exacerbated injury, presumably by increasing vulnerability to hemorrhage (Li et al., 2020). 

In contrast, ethanol substantially increased vulnerability to hemorrhagic stroke, and not 

only aggravated hemorrhagic volume, but also increased microglial activation and overall 

inflammation (Liew et al., 2016). These changes result in the hemorrhagic stroke being more 

severe, and significantly increased mortality and degree of impairment following stroke 

resolution (Daniel & Bereczki, 2004).

Adolescent Ethanol Exposure Produces Sex-Specific Changes in Ethanol-Induced 
Inflammation

Acute ethanol exposure during adolescence is known to evoke a significant neuroimmune 

signaling response and these neuroimmune signaling changes persist into adulthood. Human 

data supports that individuals with a history of AUD show increases in many immune 

signaling molecules such as HMGB1 that correlate with lifetime alcohol exposure (Crews 

et al., 2013). In addition, both human data as well as rodent studies have indicated a 

persistent increase in TLR expression, including TLR4, following AIE (Crews et al., 2017). 

Long-term changes in histone acetylation as well as brain BDNF levels have been observed 

following AIE and this correlates strongly with changes in neuroimmune gene expression 

and ultimately decreased neurogenesis (Broadwater et al., 2014; Sakharkar et al., 2016). 

While these data highlight the potential for AIE to produce lasting changes in immune gene 

expression, fewer studies have assessed whether the sex of the animal would modify these 

results and if these changes also reflect lasting differences in peripheral immune activation.

In previous work, male rats with a history of AIE showed a unique (not observed in 

their female counterparts), robust suppression of adult peripheral cytokine gene expression 

in response to either an LPS or a restraint stress challenge in adulthood (Vore et al., 

2017). Follow-up work reported that male rats with a history of AIE also displayed a 

suppressed neuroimmune response to adult ethanol challenge when brain cytokine protein 

was measured using large molecule microdialysis (Gano et al., 2019). When male and 

female rats with a history of AIE were challenged with an identical dose of ethanol in 

adulthood, both sexes displayed elevated hippocampal IL-6 and IκBα, however, only male 
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rats showed this increase in the amygdala (Vore et al., 2021 [Under Review]). Collectively, 

this work highlights that male rats may be uniquely susceptible to long-lasting changes in 

inflammation after AIE, with females being resistant to such changes.

In Vore et al., 2021, male rats with a history of AIE also displayed decreased VEGF-A 

(a known BBB permeability inducing factor) gene expression in response to an adult 

ethanol challenge that was not observed in female rats. Using the identical experimental 

manipulation, male rats also showed altered hippocampal ethanol kinetics, achieving 

significantly higher brain ethanol concentrations more rapidly than adolescent vehicle-

exposed counterparts (Gano et al., 2019). The shift in ethanol transit into the CNS among 

AIE-exposed males indicates the potential for a change in the neurobehavioral response to 

ethanol. When rats exposed to the same AIE and adult ethanol challenge were assessed 

for Loss of Righting Reflex (LORR) sensitivity, male rats with a history of AIE showed 

an almost 50% reduction in sleep time that was not observed in female comparators. Male 

rats showed no lingering signs of tolerance or altered ethanol metabolism when BEC curves 

were assessed after a challenge with 0.75, 1.5, or 3.0 g/kg ethanol. The data discussed 

above highlight critical sex differences in adolescent ethanol sensitivity that require further 

exploration and could accompany BBB disruption and portend significant changes in later-

life pathology.

Alterations in BBB Permeability Exacerbate Brain Pathology

An abundance of data supports the notion that alterations in BBB permeability are 

associated with more severe instances of brain pathology. Small differences in access 

to and from the brain can have widespread impact on brain health in the long-term. 

The link between vascular dysfunction and Alzheimer’s disease (AD) has been studied 

both as a mechanistic component of the disorder as well as how altered BBB function 

may worsen disease pathology. Vascular dementia is the second most common form of 

dementia following AD and perhaps best represents the substantial increase in pathological 

changes in cerebrovasculature can create (Gorelick et al., 2011). Cerebrovascular disease 

can result in cognitive impairment ranging from mild to full dementia, similar to what 

is observed in AD patients. Due to the important role the cerebral vasculature plays in 

supplying neurons as well as other components of the NVU with oxygen and nutrients, 

even small vascular alterations can contribute to cognitive impairment. These include 

factors such as microbleeds, microinfarcts, arteriosclerosis, and vascular stiffening and 

all of these are connected to reductions in global cerebral perfusion as well as different 

severities of dementia and cognitive impairment (see Iadecola 2013 for relevant review). 

The summated impact of these pathogenic factors may ultimately lead to white matter 

damage, and increased BBB permeability, leading to increased brain cytokine levels, 

microglial activation, and oxidative stress. This highlights how even small perturbations 

in the homeostasis governed by the BBB can lead to substantial physiological and behavioral 

dysfunction.

One of the hallmark characteristics of Alzheimer’s Disease is the steady accumulation of 

harmful amyloid beta plaques as the individual ages. These Aβ plaques are then believed to 

ultimately create the cognitive disturbance and many other neurological symptoms observed 
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in AD (Cleary et al., 2005; Lesne et al., 2006; Butterfield et al., 2007). The BBB plays 

a fundamental role in both amyloid beta production as well as clearance out of the brain. 

Recent work in both rodent and human models has shown that peripheral amyloid beta 

contributes to the ultimate accumulation of brain Aβ (Eisele et al., 2010; Sagare et al., 

2011). In addition, peripheral expression of a variety of Aβ sequestering agents such as 

anti-amyloid beta antibodies have been shown to help slow brain Aβ accumulation by 

reducing peripheral Aβ contribution (DeMattos et al., 2002). Much of the shuttling of 

Aβ into the brain and the continued propagation of Aβ is mediated through the receptor 

for advanced glycation end products (RAGE) (Deanne et al., 2003). RAGE expression 

directly embedded within the brain endothelium permits direct transit of Aβ as well as 

peripheral monocytes into the brain (another marker of heightened peripheral inflammation) 

and ultimately helps to propagate Aβ toxicity (Giri et al., 2000). Conversely, low density 

lipoprotein receptor-related protein 1 (LRP1) also located in the brain endothelium plays a 

vital role in the shuttling of brain Aβ back into the blood (Deanne et al., 2004; Jaeger et al., 

2009). Altered LRP1 expression in brain microvessels was associated with the accumulation 

of Aβ during both natural ageing as well as pathological AD (Shibata et al., 2000; Donahue 

et al., 2006). Clearly, the BBB and brain vasculature as a whole is inextricably linked with 

both the genesis of AD as well as the rate of its progression and ultimate severity. This has 

led to more recent studies that highlight a vascular hypothesis of AD wherein vascular injury 

ultimately leads to BBB dysfunction that produces the aberrant accumulation of Aβ plaques, 

which ultimately contributes to tau pathology (Zlokovic et al., 2011).

Similar dysfunctions in BBB integrity have been reportedly associated with Parkinson’s 

pathology and potentially its prognosis (Kortekaas et al., 2005; Hirano et al., 2008; Lee 

& Pienar, 2014). Parkinson’s disease (PD) is the most common movement disorder in the 

elderly and is generally considered the second most common degenerative neurological 

disorder in senescence (Desai et al., 2007). It is characterized by the pathological loss of 

dopamine neurons and the presence of Lewy bodies that ultimately produce significant 

motor dysfunction such as tremor, bradykinesia, and instability. While the exact mechanisms 

underlying this dysfunction have yet to be confirmed, animal models have consistently 

demonstrated elevated inflammatory tone and increased inflammatory cytokine presence in 

the brain of PD animal models (Barcia et al., 2003). While it was originally believed that 

PD patients did not show altered BBB function, more recent work using sensitive, modern 

methods of probing BBB integrity such as FITC-labeled albumin have shown significantly 

increased BBB permeability in the striatum and other components of the nigrostriatal 

pathway (Carvey et al., 2006). These differences were observed both in animals following 

6-hydroxydopamine lesions (Carvey et al., 2006) as well as MPTP exposure (Zhao et al., 

2007). The latter authors also noted that minocycline treatment (known to inhibit microglial 

activation) has been shown to prevent the changes in leakage associated with MPTP-induced 

Parkinsonian symptoms (Zhao et al., 2007). These changes, coupled with an overall increase 

in microglia numbers in areas where BBB leakage and neuronal degeneration was observed, 

further suggests a role for inflammation and subsequent BBB damage in PD pathology 

(Teismann et al., 2004). This was further supported by data showing that TNF-α KO mice 

showed neither microglial dysfunction nor the increased BBB permeability following MPTP 

exposure (Zhao et al., 2007). Finally, substantial increases in vascular density/angiogenesis 
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were observed in the substantia nigra of PD patients (Faucheux et al., 1999). Increased 

angiogenesis occurred in close proximity to areas of high neuronal death and correlated 

well with heightened levels of VEGF (Barcia et al., 2005). The authors speculated that 

in response to neuronal degeneration, increased VEGF may be the body’s attempt to 

supplement blood and nutrient flow as well as removal of cellular debris. This activity 

may help in the short-term but ultimately allows further peripheral macrophage infiltration 

and exacerbates neuronal degeneration and disease progression (Desai et al., 2007).

Natural Aging and Inflammation

Both PD and AD are common neurodegenerative disorders that frequently occur in 

mid-to-late aging. As discussed above, both disorders are characterized by pathological 

inflammation that co-occurs with, or perhaps ultimately produces, changes in BBB 

permeability. This allows the unrestricted transit of toxins or harmful molecules into the 

brain. This potentially triggers the onset of pathology, which ultimately can initiate a cycle 

of increased inflammation, disrupted BBB activity, and decreased efflux of toxins producing 

a more profound pathology. While these disorders represent extreme instances of pathology, 

natural aging is also characterized by well documented changes in inflammatory tone as well 

as increased BBB leakage (Perkins et al., 2021). As “normal” individuals age a chronic, low-

grade inflammation dubbed “inflammaging” gradually develops (Franceschi et al., 2018). 

This persistent activation of the innate immune system is believed to reflect natural changes 

that occur during senescence. Ultimately, the inflammaging phenotype develops which is 

believed to contribute to increased vulnerability to bacterial, viral, and other forms of 

infection seen in aging (Dall’Olio et al., 2013).

While the exact cause of inflammaging has yet to be identified, it is likely due to the 

summation of several different CNS changes. The first is the gradual accumulation of 

cellular debris and damaged molecules that can occur during aging, owing in part to 

aberrant production and slowing clearance of the same (Franceschi et al., 2014). A variety 

of different compounds are recognized by different sensors as “danger signals” that trigger 

an innate immune reaction to prompt resolution of this dysfunction. However, as the body 

ages and these signals begin to accumulate, it can overwhelm CNS clearance mechanisms 

and become a chronic condition (Franceschi et al., 2000). Another potential contributor 

to this chronic immune activation could be increased leakiness of the gut microbiome as 

an individual ages. While the gut normally traps microbes and their products, over time 

heightened leakiness may trigger the release of these products into surrounding tissue 

producing cytokine release and subsequent innate immune activation (Biagi et al., 2011). 

It is also likely that natural senescence in cells could contribute to increased inflammatory 

tone. Normally, the development of senescence in cells serves an important biological 

function in preventing the rapid proliferation of aged cells that can contribute to cancer; 

however, the accumulation of senescent cells that release pro-inflammatory cytokines 

could serve to drive age-related pathology. In mice, the removal of senescent cells has 

been shown to ameliorate age-related pathology (Coppe et al., 2010). It is also plausible 

that inflammaging represents a natural decline in immune function. As individuals age, 

adaptive immunity naturally declines and a possible compensatory mechanism is that 

innate immunity undergoes a mild increase, again triggering a mild, persistent increase 
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in inflammatory tone (Shaw et al., 2010). Complementing the presence of inflammaging 

and the gradual increase of inflammatory signaling molecules across aging, “normal” aging 

is associated with increased BBB leakiness (Zhang et al., 2018), an effect that could be 

worsened by a lifetime history of alcohol consumption. The combination of increased BBB 

permeability and heightened inflammation is a natural progression and likely contributes to 

the significant increase in overall disease vulnerability noted in older individuals.

Implications for Drug/Alcohol Use and Abuse

Several post-mortem studies have documented BBB pathology in individuals with a history 

of AUD (Pratt et al., 1990; Thomsen, Kaatsch & Asmus, 1999). In vitro models of the 

BBB have shown that ethanol and acetaldehyde augmented BBB permeability (Haorah 

et al., 2008). In addition, neuroimaging studies revealed significantly increased BBB 

permeability in the hippocampus of social drinkers (Ivanidze, Mackay & Hoang, 2019). 

Other studies examining water distribution using diffusion tensor imaging showed abnormal 

brain diffusivity, reflective of BBB leakage, in the fronto-temporal regions of the brains 

of individuals with current AUD in contrast to healthy comparators (Monnig et al., 2013). 

The same study documented persistent damage in the parietal regions of individuals with 

at least one year of abstinence (Monnig et al., 2013). These changes may enhance transit 

of cytokines and other inflammatory signaling molecules into the brain of individuals with 

a history of AUD. Subsequently, it could substantially alter the ability of ethanol and 

other drugs of abuse to cross the BBB. Much as heroin is considered to have a higher 

degree of subjective reinforcement than morphine due to its ability to more rapidly transit 

into the brain (Schaefer et al., 2017), even small changes in brain ethanol kinetics (such 

as those observed in Gano et al., 2019) could substantially alter ethanol’s reinforcing 

property. Similarly, changes in BBB permeability may significantly alter acetaldehyde 

levels. Normally, blood acetaldehyde levels do not reflect what is observed in the brain 

as it is screened out by the BBB (Tabakoff, Anderson & Ritzmann, 1976). While it is 

believed that de novo acetaldehyde is produced through the metabolism of CNS ethanol by 

regional ADH (Martinez et al., 2001), increased access of peripheral acetaldehyde into the 

brain may produce biologically active levels capable of producing reinforcement as observed 

when acetaldehyde was administered directly into the brain (Myers et al., 1984; Amit & 

Smith, 1985; Brown, Amit & Rockman, 1979; Rodd et al., 2002; Quertemont, 2004). In 

addition, when chronic or high levels of ethanol are consumed, the microsomal ethanol 

oxidation system (MEOS) and induction of CYP2E1 is also utilized to oxidize ethanol into 

acetaldehyde (Crabb & Liangpunsakul, 2007). Unlike with ADH, with chronic exposure 

MEOS enzymes increase in number and are not inhibited by the presence of acetaldehyde 

(Crabb & Liangpunsakul, 2007). AIE could readily induce CYP2E1 activity in a regionally 

specific manner given the presence of MEOS systems across the brain (Zimatkin & Dietrich, 

1997) that may render specific brain areas vulnerable to acetaldehyde accumulation and 

subsequent inflammation and behavioral changes.

While this review has focused predominantly upon alcohol, a number of other common 

drugs of abuse also produce alterations in BBB permeability. Continuous administration 

of cocaine produces an almost 50% increase in BBB permeability (Sharma et al., 

2009) believed to be modulated through shared mechanistic factors such as increased 
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TNF-α (Sharma et al., 2009); TJ degradation (Dietrich, 2009); and altered astrocyte 

(Wang et al., 2021) and microglia function (Buch et al., 2012). Similar changes have 

been shown to occur following methamphetamine administration (Northrop & Yamamoto, 

2015). Methamphetamine evoked changes in oxidative stress (Ramirez et al., 2009), 

changes in astrocytic end-feet contacts (Northrop & Yamamoto, 2012), and potentially 

methamphetamine-associated excitotoxicity in pericytes (Montiel-Eulefi et al., 2012) have 

all been identified as potential mechanisms through which methamphetamine may alter 

BBB integrity. Morphine and other opiates show similar alterations in BBB homeostasis 

(Kousik et al., 2012) and also inhibit PGP expression, reducing morphine removal from the 

brain and increasing the analgesic and potentially reinforcing consequences of such drugs 

(Seleman et al., 2014). Finally, chronic nicotine exposure also disrupts TJ proteins (Kousik 

et al., 2012) and direct binding to nicotinic receptors localized on brain endothelial cells 

induces NO release and can further compromise BBB function (Mazzone et al., 2010). 

The present review has highlighted many shared mechanisms by which drugs of abuse 

with completely different pharmacodynamic properties can result in the same changes of 

BBB integrity. Polysubstance abuse is common in adolescents and heavy cannabis use is 

associated with a higher risk for future illicit drug use (Patton et al., 2007). It is possible that 

adolescent consumption of one drug may alter BBB permeability, subsequently modifying 

the subjective response to future drug exposures (both to the same drug and to others). 

Beyond changes in drug access to the brain, alterations in BBB permeability may render 

drug abusing individuals more vulnerable to comorbid disease states such as HIV infection 

(Fitting et al., 2010) and hepatitis that are often observed in higher percentages of substance 

abusing individuals in contrast to individuals not currently abusing drugs (Nath, 2010).
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Abbreviations

AIE Adolescent Intermittent Ethanol

ADH Alcohol Dehydrogenase

AUD Alcohol Use Disorder

AD Alzheimer’s Disease

Aβ Amyloid Beta

BBB Blood Brain Barrier

BECs Blood Ethanol Concentrations

BDNF Brain Derived Neurotrophic Factor

CNS Central Nervous System
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CYP2E1 Cytochrome P4502E1

Da Daltons

DAMP Danger-Associated Molecular Pattern

FITC Fluorescein Isothiocyanate

HMGB1 High Mobility Group Box-1

HRP Horseradish Peroxidase

IL Interleukin

I.P. Intraperitoneal

I.P. Intravenous

KO Knockout

LPS Lipopolysaccharide

LTP Long-term Potentiation

LORR Loss of Righting Reflex

LRP1 Low Density Lipoprotein Receptor-Related Protein 1

MEOS Microsomal Ethanol Oxidation System

NIAAA National Institute of Alcohol Abuse and Alcoholism

NALT Nerve Associated Lymphoid Tissue

NVU Neurovascular Unit

NO Nitric Oxide

IκBα Nuclear Factor of Kappa Light Polypeptide Gene Enhancer in B-

Cells Inhibitor, Alpha

PGP Para-glycoprotein

PD Parkinson’s Disease

PNS Peripheral Nervous System

PND Postnatal Day

RAGE Receptor for Advanced Glycation End Products

SAMHSA Substance Abuse and Mental Health Services Administration

TJ Tight Junction

TNF Tumor Necrosis Factor
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TLR Toll-Like Receptor

VEGF Vascular Endothelial Growth Factor
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Figure 1: Hypothetical Mechanistic Outline by which AIE Alters BBB Permeability.
This figure illustrates the hypothesized mechanism through which chronic ethanol exposure 

during the important developmental period of adolescence may produce sex-specific changes 

in inflammation, ultimately resulting in elevated male BBB permeability.
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Figure 2: Schematic Representation of the Neurovascular Unit.
This schematic highlights the complex array of cell-to-cell interactions that influence the 

BBB and molecular access into the CNS. The endothelial cells that form tight junctions 

are surrounded by the basal lamina as well as pericytes that directly communicate with 

the endothelial cells. Bidirectional communication occurs at each level between astrocytes, 

neurons, and microglia as well as astrocytic end-feet connections directly modifying pericyte 

signaling.
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Figure 3: Comparison of Different Methods of Probing BBB Permeability.
Adult male, Sprague-Dawley rats received 500 μg/kg i.p. LPS injection and 15 hours later 

BBB permeability was assessed with i.v. 1.0 mL/kg, 2.0% Evans Blue Dye. No differences 

in dye concentration were observed in gross-dissected brain tissue, evidenced by dye levels 

being comparable to no dye controls, despite evidence that high dose LPS increased BBB 

permeability (Ghosh et al., 2014; Banks et al., 2015) (A). In a subsequent pilot, rats (n=2–3) 

with a history of adolescent intermittent ethanol (AIE) under basal conditions, revealed 

significant differences in 20 kDa dextran permeability in a range of brain regions (B).
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Figure 4: Evidence of Ethanol’s Ability to Disrupt the NVU.
Studies indicate potential mechanisms by which ethanol-evoked changes may disrupt BBB 

permeability are indicated by exclamation points on relevant NVU components. While many 

of the papers referenced in this schematic highlight the specific role that inflammation plays, 

there exists substantial correlational evidence that long-term ethanol exposure could alter 

BBB permeability directly.
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